Recombinant Human Thermostable FGF-2
Catalog # CH88
Derived from E.coli

DESCRIPTION
Recombinant Human Thermostable Fibroblast Growth Factor 2 (K128N) is produced by our E.coli expression system and the target gene encoding Met1-Ser155 is expressed.

Accession #: P09038-2
Known as: Fibroblast growth factor 2; FGF-2; Basic fibroblast growth factor; bFGF; Heparin-binding growth factor 2; HBGF-2; FGF2; FGF2

FORMULATION
Lyophilized from a 0.2 μm filtered solution of 20mM Tris, 200mM NaCl, pH7.5.

SHIPPING
The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature listed below.

STORAGE
Lyophilized protein should be stored at <-20°C, though stable at room temperature for 3 weeks.
Reconstituted protein solution can be stored at 4-7°C for 2-7 days.
Aliquots of reconstituted samples are stable at <-20°C for 3 months.

RECONSTITUTION
Always centrifuge tubes before opening. Do not mix by vortex or pipetting.
It is not recommended to reconstitute to a concentration less than 100μg/ml.
Dissolve the lyophilized protein in distilled water.
Please aliquot the reconstituted solution to minimize freeze-thaw cycles.

QUALITY CONTROL
Purity: Greater than 95% as determined by reducing SDS-PAGE.
Endotoxin: Less than 0.1 ng/μg (1 IEU/μg).

AMINO ACID SEQUENCE
MAAGSITTPLALPEDGSGAFPPGHKFDPKRLYCKNGFFLRIHPDGRVGDVREKSDPHIKLQLQAEERGVVSIKGVCANRYLA MKEDGRLLASKCVTDECFFFFERLESNYNTYRSKYTSWYVALNRTGQYKLGSKTPGQKAILFLPMSAKS

BACKGROUND
Fibroblast growth factors (FGF) are a family of heparin-binding secreted proteins that stimulate cell proliferation and differentiation in a wide variety of tissues. FGFs play important roles in diverse biological functions both in vivo and in vitro, including mitogenesis, cellular migration, differentiation, angiogenesis, and wound healing. Human embryonic stem cell (hESC) cultures require FGF basic (also known as FGF-2 or bFGF) in cell culture media to remain in an undifferentiated and pluripotent state. Thermostable FGF basic was engineered for enhanced stability in culture media, without modification of its biological function. FGF basic is a required component of stem cell culture media for maintaining cells in an undifferentiated state. Because FGF basic is unstable, daily media changes are needed. The thermostable FGF basic that supports a 2-day media change schedule, so no media changes are required over a weekend. This thermostable FGF basic was more stable than FGF basic in biochemical studies, and maintained cell growth, pluripotency and differentiation potential with a 2-day feeding schedule.